
Lecture 5: Introduction to Python and Biopython
October 11, 2022

ICQB
Introduction to Computational & Quantitative Biology (G4120)
Fall 2022
Oliver Jovanovic, Ph.D.
Columbia University
Department of Microbiology & Immunology

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python
The Python programming language was released in 1991 after two years of
development by Guido van Rossum, a Dutch programmer. It is distinguished by its
emphasis on simplicity and readability of code, and uses whitespace indentation to
delimit blocks of code.

Python is an interpreted general purpose programming language, and supports a
variety of programming paradigms, including object-oriented, structured, functional
and procedural programming.

The reference implementation of Python is written in C and called CPython, and is
free and open source, managed by the non-profit Python Software Foundation, and
supported by a large community of open source developers. The Python Package
Index (PyPi), which serves as a repository for free third party Python software,
currently contains over 350,000 packages.

Python has become one of the world’s most popular programming languages, used
heavily at Amazon, CERN, Facebook, Google and NASA, widely taught in introductory
computer science courses, and is heavily used in bioinformatics.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python 2 and Python 3
Python 2 Python 3

raw_input() input()
print "Hello" print("Hello")
5/2 = 2 5/2 = 2.5
xrange() range()
ASCII strings UNICODE strings

These are some of the notable differences between the versions, but others exist as
well. Python 3 is not backward compatible with Python 2.

Python 2 is now the legacy form of the language. However, it is quite pervasive in older
code and computers, and as it can take significant effort to port Python 2 code to Python
3, a large body of legacy Python 2 code is likely to continue to exist and be used.

Note that in the most recent version of macOS, Monterey, Python 3 is installed as
python3, needs to be referenced as such to use (e.g. #!/usr/bin/python3).

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python Standard Library
Python features an extensive standard library that can be called to provide
additional functionality using an import statement. Some potentially useful
functions for bioinformatics include:

itertools
Fast, efficient looping iterator functions.

math
Basic mathematical functions.

random
Generates pseudo-random numbers.

re
Regular expression matching operations (similar to Perl).

string
Provides additional string functions and classes, including some legacy functions (note, StringIO can also
be useful when you want to read and write large strings in memory).

sys
System specific parameters and functions (including reading command line arguments).

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python Standard Parsers
argparse
A command line option, argument and sub-command parser. See https://docs.python.org/3/library/
argparse.html for details.

csv
A CSV file parser. See https://docs.python.org/3/library/csv.html for details.

fileinput
Allows for quickly looping over standard input or a list of files. See https://docs.python.org/3/library/
fileinput.html for details.

sqlite3
A simple interface to SQLite.

urllib.parse
Parses URL strings into their components (in some cases, may need to also use str.split).

xml.dom.minidom
A minimal implementation of the Document Object Model interface, useful for parsing XML or SMBL files.

xml.etree.ElementTree
A simple method for parsing and storing hierarchical data structures in memory, including XML
documents.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python Input and Output
Keyboard input to a Python 3 program can be obtained using the input function, e.g. i = input()
which returns whatever the user typed up to pressing return as a string. Numerical input has to be
converted by type casting, e.g. i = int(i). In Python 2, the raw_input function is used for strings
and input is used for integers.

Use the open function to open a file object for reading (by default, 'r'), overwriting ('w'), or
appending ('a'). Once done, use the close method to close the file. The readline method reads a
single line including any newline character, while readlines reads all the lines in a file, and returns
them as a list of strings, The write method writes a single string (which can include newline
characters) to a file, while writelines writes a list of strings to a file:

file_object = open("anybody.txt", 'w')
file_object.write("Is there anybody out there?")
file_object.close()

The optional fileinput module allows for quickly looping over standard input or a list of files:

import fileinput
for line in fileinput.input()

pass # A_placeholder_function

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python Command Line Arguments
Command line arguments are the values, separated by spaces, that are passed
when calling a script along with the calling statement, e.g. the name of a file for the
script to act upon.

sys module
The sys module provides access to some variables used or maintained by the
interpreter and to functions that interact strongly with the interpreter, including
sys.argv, an array for command line arguments.

sys.argv
Provides a list of command line arguments passed to a Python script as an array.
argv[0] is the script name, subsequent arguments can be read as argv[1],
argv[2], etc. Note that if the command was executed using the -c command line
option to the interpreter, argv[0] is set to the string '-c', and if no script name
was passed to the Python interpreter, argv[0] is the empty string. To use
sys.argv, first import sys.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python 2 Command Line Output
#!/usr/bin/python

import random
import sys

def DNA(length):
return ''.join(random.choice('acgt') for _ in xrange(length))

if len(sys.argv)==2:
length = abs(int(sys.argv[1]))
print(DNA(length))

elif len(sys.argv)==3:
length = abs(int(sys.argv[1]))
filename = sys.argv[2]
fo = open(filename, 'w')
fo.write(DNA(length) + "\n")
fo.close()

else:
length = input ("Enter length of random DNA sequence to generate: ")
filename = raw_input ("Enter filename to save random DNA sequence to: ")
fo = open(filename, 'w')
fo.write(DNA(length) + "\n")
fo.close()

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python 3 Command Line Output
#!/usr/bin/python3

import random
import sys

def DNA(length):
return ''.join(random.choice('acgt') for _ in range(length))

if len(sys.argv)==2:
length = abs(int(sys.argv[1]))
print(DNA(length))

elif len(sys.argv)==3:
length = abs(int(sys.argv[1]))
filename = sys.argv[2]
fo = open(filename, 'w')
fo.write(DNA(length) + "\n")
fo.close()

else:
length = input ("Enter length of random DNA sequence to generate: “)
length = int(length)
filename = input ("Enter filename to save random DNA sequence to: ")
fo = open(filename, 'w')
fo.write(DNA(length) + "\n")
fo.close()

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python 2 Command Line Input
#!/usr/bin/python

from string import *
import sys

def count_gc(dna):
count_g = count(dna, 'g')
count_c = count(dna, 'c')
dna_length = len(dna)
percent_gc= 100 * float (count_g + count_c) / dna_length
return percent_gc

if len(sys.argv)==2:
filename = sys.argv[1]
with open(filename) as x: dna = x.read()
print count_gc(dna), "percent GC in file"

else:
dna = raw_input ("Enter a lowercase DNA sequence: ")
print count_gc(dna), "percent GC entered"

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python 3 Command Line Input
#!/usr/bin/python3

import sys

def count_gc(dna):
count_g = str.count(dna, 'g')
count_c = str.count(dna, 'c')
dna_length = len(dna)
percent_gc= 100 * float (count_g + count_c) / dna_length
return percent_gc

if len(sys.argv)==2:
filename = sys.argv[1]
with open(filename) as x: dna = x.read()
print (count_gc(dna)), "percent GC in file"

else:
dna = input ("Enter a lowercase DNA sequence: ")
print (count_gc(dna)), "percent GC entered"

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Documenting Python
Comments
Comments in Python start with a # and a single space. They should be indented to the same
level as the code, and can span multiple lines. Inline comments should be used sparingly.

This is a Python comment.

Documentation Strings
The string that appears as the first statement in a module, function, class or method definition
in Python is a documentation string, or doctoring. It becomes the __doc__ special attribute
of that object. By convention, triple double quotes should be used on each side of a
docstring. Docstrings spanning multiple lines should start with a one line summary, followed
by a blank line, followed by the rest.

def spam_filter():
"""Docstring for spam_filter, describes the function."""

Documentation Systems
For larger projects, using a Python documentation generator such as Sphinx (http://
www.sphinx-doc.org), which uses reStructuredText markup language, can be helpful.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python Testing
When developing large or complex software packages, automated
software testing procedures can save a great deal of time and effort.
Unit testing involves testing individual units of code with a set of
appropriate test cases.

doctest
Python features a simple automated Python session testing framework
called doctest which searches for examples of tests embedded in
docstring documentation, runs them, and verifies the results.

unittest
Python features a full unit testing framework called unittest, which
loads and runs individual test cases or suites of tests, then reports the
results. It is particularly suited for use with large, complex projects.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Installing Python Packages
Installing a large Python package manually can be a complex procedure, as many
pieces may need to be installed in specific locations, the Python search path needs to
be correctly configured, portions of the package may need to be correctly compiled,
and the package may have certain dependencies (other packages that need to be
properly installed for it to function). Thus, it is often far easier to use a prepackaged
installation, or a Python package management system installer, such as pip, which
automates installing packages from the Python Package Index (PyPI).

pip installation
In the most recent version of macOS, Monterey, pip is preinstalled as pip3. You can simply install packages from PyPI
by running pip3 install package_name (you may need to use sudo, e.g. sudo pip3 install
biopython). pip will attempt to resolve dependencies and download and install any other required packages. pip
often comes preinstalled as pip (instead of pip3). It can also be downloaded and installed from https://pip.pypa.io.

List installed packages: pip3 list
Search for a package: pip3 search query_string
Install a package: pip3 install package_name
Uninstall a package: pip3 uninstall package_name
Show installed package details: pip3 show package_name
List outdated packages: pip3 list --outdated
Upgrade an installed package: pip3 install --upgrade package_name
Upgrade to the latest version of pip: python3 -m pip install --upgrade pip

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python and Bioinformatics
iPython
An enhanced interactive shell for Python programming: ipython.org

NumPy and SciPy
Scientific computing packages for Python: www.numpy.org

matplotlib
A simple 2D plotting library for Python: matplotlib.org

Cython
Allows you to embed compiled optimized bits of C or C++ code in a Python program: cython.org

SQLAlchemy
A SQL toolkit and object relational mapper for SQL databases in Python: sqlalchemy.org

Django
A rapid back end web development framework for Python: www.djangoproject.com

Pandas
A high-performance data structure and data analysis toolkit for Python: pandas.pydata.org

Biopython
A bioinformatics and biological computation toolkit for Python: biopython.org

Lecture 5: Introduction to Python and Biopython
October 11, 2022

NumPy and SciPy
A set of packages that add expanded scientific computing
capabilities to Python including:

Fast N-dimensional array objects

Defining and storing arbitrary data types

Database integration

Tools for C, C++ and Fortran code integration

Linear algebra, Fourier transform and random number generation functions

Statistical functions and other mathematical routines, solvers and optimizers

Source: https://www.numpy.org

https://www.numpy.org
https://www.numpy.org

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Pandas
Pandas provides a set of particularly powerful data structures and
functions for working with structured data. It is named after panel
data, which in statistics and econometrics refers to multi-
dimensional data that frequently changes over multiple time
periods.

DataFrames
The primary data structure in pandas is a DataFrame, a two dimensional column
oriented structure with row and column labels that can be thought of as a table of data,
similar to the R programming language data.frame object. Pandas also supports one
dimensional array like structures called a Series, containing an array of data and an
associated array of labels.
 Pandas allows for data to be loaded into very large DataFrame structures and
quickly and efficiently manipulated in a variety of ways: cleaned, transformed, merged,
reshaped, pivoted, etc. It also offers high-level plotting functions that supplement those
offered by matplotlib, and simplifies the visualization of large, complex data sets.

Source: https://pandas.pydata.org

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Biopython
Biopython is an extensive package of Python tools, classes and functions for bioinformatics and
computational biology. It was first released in 2000, and now contains over 300 modules for dealing
with biological data. The current version, 1.79, was released in June of 2021, and requires Python 3.6
or later. A previous version, 1.76, supports Python 2.7 to 3.5.

In Biopython, sequence data is represented by a Seq class, which includes biological sequence
methods such as transcribe or translate, and specifies the sequence alphabet used. The
SeqRecord class describes sequences, with features described by SeqFeature objects.

Biopython handles importing and exporting biological data from a wide variety of formats, including
Clustal, DNA Strider, FASTA, GenBank, mmCIF, Newick, NEXUS, PDB, PHYLIP and phyloXML using
Bio.SeqIO and other modules. The Bio.Entrez module can download and import data directly from
various NCBI databases. Phylogeny data can be imported into Tree and Clade objects and
traversed and analyzed using the Bio.Phylo module. Molecular structure data can be imported into
Structure objects and examined and analyzed using the Bio.PDB module.

Other Biopython features include a GenomeDiagram module for visualizing sequence and genome
data, a Bio.PopGen module for interacting with Genepop, support for the BioSQL model and
schema, and a number of command line wrappers which allow for Python interaction with commonly
used bioinformatics tools such as BLAST, Clustal and EMBOSS.

Source: http://www.biopython.org

http://www.biopython.org
http://www.biopython.org

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Object-oriented Programming (OOP)
In object-oriented programming (OOP), a class serves as a blueprint for creating
an instance called an object. The class defines the data and behavior of the
object. Each object created from a class can have its own set of properties.

Properties are applied to variables inside a class.

For example, the BioPython Seq class is defined as:
class Bio.Seq.Seq(data, alphabet=Alphabet())
An object derived from this class will contain a string with an alphabet property, which defines whether
it is DNA, RNA or protein.

Methods define the behavior of a class.

For example, the BioPython Seq class has built in methods for common sequence operations such as:
complement(self), reverse_complement(self), transcribe(self),
back_transcribe(self) and translate(self, table='Standard', stop_symbol='*',
to_stop=False, cds=False, gap=None) as well as standard string manipulation methods.
Depending on the alphabet property, not all the methods may be available, e.g. transcribe(self) is
limited to DNA sequences. Dot notation is used to access methods, e.g. seq.transcribe().

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Key Concepts of Object-oriented Programming

Inheritance
Objects of one class can derive their behaviors from another class. When a class
inherits from another, the inheriting child class is considered a subclass, and the parent
class it inherits from is considered its superclass. Python allows for multiple inheritance,
where objects of one class can derive behavior from multiple base classes.

Polymorphism
Objects of different classes can be used interchangeably. When the same interface
can be used for different data types and functions, it greatly simplifies programming. In
Python, all classes inherit from the object class implicitly, and the language supports
Method Overriding, which allows you to modify methods in a child class inherited from
a parent.

Encapsulation
Objects keep their internal data private. Instead of directly manipulating an object’s
data, other objects send requests to the object, in the form of messages, which the
object may respond to by altering its internal state. This practice can simplify
programming. Python supports encapsulation, but does not strictly enforce it.

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Basic Biopython
pip3 install biopython

python3

>>> from Bio.Seq import Seq

>>> my_seq = Seq("ATGCATTAG")

>>> print (my_seq)

>>> print (my_seq.complement())

>>> print (my_seq.reverse_complement())

>>> print (my_seq.translate())

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Biopython and Sequences
#!/usr/bin/python3

from Bio import SeqIO
from Bio.SeqUtils import GC

for sr in SeqIO.parse ("test.fasta", "fasta"):
print (sr.id)
print (repr(sr.seq))
print (len(sr))
print (sr.seq)
print (GC(sr.seq))
print (sr.seq.transcribe())
print (sr.seq.translate())
print (sr.seq.translate(to_stop=True))

bpfasta.py

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Biopython and Parsing
#!/usr/bin/python3
from Bio import Entrez
Entrez.email = "mi@columbia.edu"
handle = Entrez.efetch(db="nucleotide", rettype="gb", retmode="text",
id="2765658")
save_file = open("2765658.gbk", 'w')
save_file.write(handle.read())
handle.close()
save_file.close()

#!/usr/bin/python3
from Bio import SeqIO
SeqIO.convert("2765658.gbk", "genbank", "2765658.fasta", "fasta")

#!/usr/bin/python3
from Bio import SeqIO
recs = SeqIO.parse("cosmids1.fasta", "fasta")
for rec in recs:

print (rec.id)

convert.py

genbank.py

parsefasta.py

http://rec.id
http://rec.id

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Python for RNA-seq
HTSeq is a Python based framework for processing and
analyzing data from high-throughput sequences assays, e.g.
RNA-seq. Some of the functions HTSeq can perform include:

• Quality assessment of sequencing runs by providing statistical summaries of quality
scores and plotting base calls and base-call qualities by position in the read.

• Reading annotation data from General Feature Format (GFF) files.

• Counting how many reads cover a particular section of a chromosome or genome
and plotting this data.

• Counting how many reads fall into the exon regions of each gene in a RNA-seq run.

Source: https://htseq.readthedocs.io/

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Anaconda
Anaconda is a free open source data science platform
powered by the Python and R programming languages that
includes over 100 of the most popular packages for data
science, including NumPy, Pandas, SciPy, Matplotlib and the
Jupyter Notebook.

Anaconda includes the conda package, dependency and environment manager,
which can easily install over 1,000 additional data science packages in a variety of
languages, as well as the pip package manager. Anaconda also includes a
graphical user interface, Anaconda Navigator, and supports a variety of Integrated
Development Environments (IDEs) including Eclipse/PyDev and Spyder.

Anaconda allows you to run multiple versions of Python in isolated environments.
It easily allows you to run Python 3 on older Macs alongside Python 2.

Source: https://www.anaconda.com

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Anaconda, Biopython and BLAST
#!/usr/bin/python3

from Bio.Blast import NCBIWWW
result_handle = NCBIWWW.qblast("blastn", "nt", "8332116")
from Bio.Blast import NCBIXML
blast_record = NCBIXML.read(result_handle)
E_VALUE_THRESH = 0.04
for alignment in blast_record.alignments:

for hsp in alignment.hsps:
if hsp.expect < E_VALUE_THRESH:

print('\n****Alignment****')
print('*Sequence:', alignment.title)
print('*Length:', hsp.align_length)
print('*Identities:', hsp.identities)
id = (100.00 * hsp.identities / hsp.align_length)
print ('*Precent identity:', id)
print('*E-value:', hsp.expect)
print(hsp.query[0:75] + '...')
print(hsp.match[0:75] + '...')
print(hsp.sbjct[0:75] + '...')

blast3.py

Lecture 5: Introduction to Python and Biopython
October 11, 2022

Jupyter Lab and Notebook
Jupyter Lab and Notebook are free open source web
applications that let you create and share documents that
contain live code, data visualizations, text and equations.
Jupyter fully supports both Python and R, and is particularly
useful for interactive scientific programming and
visualization.

Anaconda includes Jupyter Notebook. Once Anaconda is installed, Notebook
can be run from Terminal (on Macs) or Command Prompt (on Windows) by
typing jupyter notebook. It can also be installed using pip, but installing
with Anaconda instead is highly recommended.

Source: https://jupyter.org

https://jupyter.org
https://jupyter.org

Lecture 5: Introduction to Python and Biopython
October 11, 2022

References
Python 3 Documentation free at:
https://docs.python.org/3/

Biopython Tutorial and Cookbook free at:
http://biopython.org/DIST/docs/tutorial/Tutorial.html

Biopython Documentation free at:
https://biopython.org/wiki/Documentation

Introduction to Computation and Programming Using Python
by John V. Guttag

Python for Data Analysis: Data Wrangling with Pandas, NumPy and iPython
by Wes McKinney

