
Lecture 4: Introduction to Programming
October 4, 2022

ICQB
Introduction to Computational & Quantitative Biology (G4120)
Fall 2022
Oliver Jovanovic, Ph.D.
Columbia University
Department of Microbiology & Immunology

Lecture 4: Introduction to Programming
October 4, 2022

History of Programming
1843 Lady Ada Lovelace writes one of the first computer programs for Charles Babbage’s Analytical Engine.
1936 Alan Turing develops the theoretical concept of the Turing Machine, forming the basis of modern

computer programming.
1943 Plankalkül, the first formal computer language, is developed by Konrad Zuse, a German engineer, which

he later applies to, among other things, chess.
1945 John von Neumann develops the theoretical concepts of shared program technique and conditional

control transfer.
1949 Short Code, the first computer language actually used on an electronic computer, appears.
1951 A-O, the first widely used complier, is designed by Grace Hopper at Remington Rand.
1954 FORTRAN (FORmula TRANslating system) language is developed by John Backus at IBM for scientific

computing.
1958 ALGOL, the first programming language with a formal grammar, is developed by John Backus for

scientific applications
1958 LISP (LISt Processing) language is created by John McCarthy of MIT for Artificial Intelligence (AI)

research.
1959 COBOL is created by the Conference on Data Systems and Languages (CODASYL) for business

programming, and becomes widely used with the support of Admiral Grace Hopper.
1964 BASIC (Beginner’s All-purpose Symbolic Instruction Code) is created by John Kemeny and Thomas

Kurtz as an introductory programming language.
1965 Structured programming is defined by Edsger Dijkstra.
1968 Pascal is created by Niklaus Wirth as a teaching language.

Lecture 4: Introduction to Programming
October 4, 2022

Evolution of Programming Languages
1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

Smalltalk 80

Ruby

SML

Caml

OCaml

Perl

Fortran I

PL/I

Algol 60

Fortran 77

Scheme

Scheme R4RS

Common Lisp

Pascal

HaskellFortran 90

Prolog

Cobol

Smalltalk

C (K&R)

Tcl

C++

Java

Java 2 (v1.2)

Python

C#

Lisp

Ada 83

Eiffel

C++ (ISO)

ML

Lecture 4: Introduction to Programming
October 4, 2022

Modern Programming Languages
1972 Prolog (Programming Logic) is developed as result of logic theorem research. It has become the most generally

used logic programming language, often used in developing expert systems.
1972 Smalltalk, the first popular object oriented programming language, is developed at Xerox PARC by Alan Kay.
1972 C is created by Dennis Ritchie at Bell Labs for programming the Unix operating system. It is fast, widely used, and

forms the basis of many other current procedural languages.
1975 Bill Gates and Paul Allen write the first version of Microsoft BASIC.
1978 Awk, a text-processing language named after the designers, Aho, Weinberger, and Kernighan, is developed for

Unix.
1979 SQL (Structured Query Language) is developed at IBM based on work to simplify access to data stored in a

relational database. It has become the most widely used database language.
1982 PostScript, a language for graphics printing and display, appears.
1983 C++, an object-oriented version of the C programming language, appears, based on earlier work on “C with

Classes”. It is often used for large projects that require speed.
1986 Objective C, a Smalltalk influenced object-oriented version of C, became widely used as the development language

for NeXTstep, and is currently the principle programming language for Mac OS X.
1987 Perl (Practical Extraction and Reporting Language) is developed by Larry Wall after he finds Unix text utilities limiting.

It has become popular as a jack-of-all trades language, and in computational biology applications.
1991 Python, a simple functional and object oriented language, is developed by Guido Van Rossum. It is often used for

rapid development, and is well suited for computational biology applications.
1991 Visual Basic is developed by Alan Cooper and Microsoft to allow for easy visual creation of Windows applications.
1995 Java, a simplified version of C++, originally developed by Sun Microsystems to control consumer appliances, is

repurposed for web development. It has become popular for writing cross-platform and web applications.
1995 Ruby, a simple and elegant object oriented programming language, is developed by Yukihiro Matsumoto.
2002 C#, an object oriented programming language based on C++ and Java, is developed by Microsoft.
2014 Swift, an object oriented programming language for iOS and OS X, is developed by Apple.

Lecture 4: Introduction to Programming
October 4, 2022

Programming
Programming involves giving a series of instructions to a computer that tell it to perform a task.
Programming languages allow one to communicate with a computer using source code that is closer to a
natural language, such as English. There are three main types of programming languages:
Assembled, Interpreted and Compiled.

Machine Code Programming
It is possible to program directly in the binary language of a computer (0’s and 1’s). This is difficult and
rarely done in modern programming.

Assembler
Automatically converts natural language into machine code. It is difficult and requires low level
understanding of the machine, but can allow for the creation of highly optimized programs.

Interpreter
An interpreter translates the source code written in a particular programming language into the
appropriate machine code as the program is run. The translation is done dynamically. This type of program
is often called a “script”. Perl, Python and Java are examples of interpreted languages (technically, their
interpreters are interpreter/compliers). Many interpreted languages have an optional compiler.

Compiler
A compiler compiles the source code written in a particular programming language into executable
machine code, creating a separate executable program which will always run as machine code. C is an
example of a compiled language. Many compiled languages offer an interpreter as well.

Lecture 4: Introduction to Programming
October 4, 2022

Programming Languages
Macro
A single, user-defined command that executes a series of one or more commands (alias, Keyboard Shortcuts).

Scripting Languages
A simple programming language that uses a syntax close to a natural language and sends commands to the operating system
or other programs when executed (AppleScript, bash, JavaScript).

Database Languages
A programming language tied closely to a database, allowing for easy queries and manipulation (SQL).

Procedural Languages
A fully featured programming language in which variables can keep changing as the program runs. Most commonly used
programming languages are procedural (C, Perl).

Functional Languages
A fully featured declarative programming language based on the evaluation of mathematical functions in which variables do not
change as the program runs (Erlang, Haskell).

Logical Languages
These programming languages are collections of logical statements and questions (Prolog).

Object Oriented Languages
A programming language in which data and functions are encapsulated in objects. An object is a particular instance of a class.
Each object can contain different data, but all objects belonging to a class have the same functions or methods. Objects can
restrict or hide access to data within them (C++, Objective C, Python, Java, Ruby).

Lecture 4: Introduction to Programming
October 4, 2022

Most Popular Programming Languages

1. Python
2. C
3. Java
4. C++
5. C#
6. Visual Basic
7. JavaScript
8. Assembly language
9. SQL
10. PHP
11. Objective-C
12. Go
13. Delphi/Object Pascal
14. MATLAB
15. Fortran
16. Swift
17. Classic Visual Basic
18. R
19. Perl
20. Ruby

Source: September 2022 TIOBE Programming Community
Index. Note that the top five have not changed for 17 years
except Perl, which was replaced by Python.

Lecture 4: Introduction to Programming
October 4, 2022

Commonly Used Programming Languages
in Bioinformatics
C
The C programming language is one of the oldest programming languages still in wide use. A compiled C program
offers excellent performance, and its syntax been very influential (www.lysator.liu.se/c/).

Python
A simple object oriented scripting language that is well suited for developing bioinformatics applications and available
under a free open source license. It is particularly easy to read and understand, and has become increasingly popular in
bioinformatics applications (www.python.org).

Java
Java is a powerful object oriented cross-platform programming language developed and made available for free by
Sun. It was originally developed for controlling consumer appliances, but repurposed for web development, then
expanded. It is simpler than C++, the object oriented version of C, but still take significant effort to master. It is very
powerful, and has been used in a number of major bioinformatics projects (www.java.com).

R
R is a language for statistics, data visualization and data analysis. It is free and open source, and has become well
established in data sciences and bioinformatics (www.r-project.org).

Perl
The Practical Extraction and Report Language (PERL) was once the most heavily used programming language in
bioinformatics. It is distributed under a free open source Artistic License and became widely adopted by the open
source programming community, resulting in numerous useful add on modules for Perl (www.perl.org).

Lecture 4: Introduction to Programming
October 4, 2022

Declarative or Imperative?
Declarative Programming
Declarative languages are less common, and describe what task a program
should perform, without telling it how to perform the task, which the language
handles.
 Declarative languages can be domain-specific (such as SQL or HTML),
functional (such as Haskell or R), logical (Prolog), mathematical, or hybrids.

Imperative Programming
Imperative languages are the most common, and use a series of statements,
including control flow statements, to change a program’s state, explicitly telling
a computer what steps it should take.
 Machine code and assembly languages function give instructions at a very
low level. Procedural imperative languages (such as C) group sets of
instructions into procedures. Object oriented imperative languages (such as
C++, Java or Python) group instructions with the state they operate on.

Lecture 4: Introduction to Programming
October 4, 2022

Type System?
How a programming language handles the type of data used:
booleans, integers, characters, dates, etc., depends on its type
system. The more restrictions imposed by the language on
changing type, the more strongly typed the language.

Static Typing
The language checks that a variable is always associated with a data type before the
program is run. This value must be explicitly declared (C, Java) or can be inferred by
the language (Haskell, Swift). Static languages that allow for unexpected type casting
(C) are weakly typed, while those that do not (Java) are strongly typed.

Dynamic Typing
The data type associated with a variable is checked as a program runs (JavaScript
Perl, Python, Ruby, R) and can vary dynamically. Dynamic languages that allow for an
unexpected change in a variable type (JavaScript, Perl) are weakly typed, those that
do not (Python, Ruby, R) are strongly typed.

Lecture 4: Introduction to Programming
October 4, 2022

Memory Management?
Manual Memory Management
Many older programming languages (C) require the programmer to manually
allocate the memory a program will use, and then manually release the
memory for reuse, which can be time consuming to implement, and a frequent
source of bugs.

Automatic Memory Management
Most modern programming languages feature automatic memory
management, the language will automatically allocate the memory required for
the program to run, and automatic garbage collection to reclaim memory no
longer required for use. There is a slight performance overhead, which is
generally outweighed by substantial increases in programming speed and
decreases in memory allocation bugs.

Lecture 4: Introduction to Programming
October 4, 2022

Batch Oriented or Event Driven?
Batch Oriented Programs
These are programs that are normally started from a command line (or run
automatically by a scheduler such as cron). A batch program can simply consist
of a text file with a list of programs it runs, or be more complex. When started, a
batch program typically initializes the data inside it, reads in what data is
specified as input, processes it, and outputs the result.

Event Driven Programs
There are programs that react to certain events sent to it by the operating
system. This is typical of graphical user interfaces (GUIs), where an event might
be a MouseUp (user moving the mouse up), or MouseClick (user clicks the
mouse), which the program then responds to.

Lecture 4: Introduction to Programming
October 4, 2022

Object Oriented?
Object oriented programming (OOP) languages encapsulate data and
functions in abstract data types called objects. Objects are designed in class
hierarchies, and inheritance allow the data and functions in a class to pass
down the hierarchy. Each object is a particular instance of a class.

Each object can contain different data, but all objects belonging to a class
have the same functions. Objects can restrict or hide access to data within
them. Functions in the object called methods are used to access data within
that object. A class can be thought of as a template for an object, specified by
a class definition.

Many popular non-object oriented programming languages (C, JavaScript, Perl)
exist, but in recent years object oriented programming languages (Java,
Python, Ruby, Swift) or languages that support object oriented use (C++, C#,
Objective C) have grown in popularity.

Lecture 4: Introduction to Programming
October 4, 2022

Compiled or Interpreted?
Compiled
Compiled programming languages use a compiler to translate the instructions
in the program into an executable program of machine code, which is then run.

Interpreted
Interpreted programming languages execute a program directly, with an
interpreter translating each instruction into one or more subroutines
precompiled into machine code.

Both
These distinctions have recently begun to blur, many interpreted languages
now feature compilers, and many compiled languages now feature
interpreters. Java features just-in-time compilation, in which a program is
compiled as it is executed, which merges features of both approaches and
allows for optimization such as dynamic recompilation.

Lecture 4: Introduction to Programming
October 4, 2022

Compiling a Simple C Program
1) Open a new document in BBEdit and type the following source code:

 #include <stdio.h>
 main ()
 {
 printf("Hello world?\n");
 }

2) Save the file in your home directory as hello.c (don’t append .txt)

3) The source code must then be compiled to run. We can use the gcc C compiler to do this by opening
Terminal, then typing gcc hello.c (on OS X this compiler and other optional command line tools can
be installed in Terminal using the command xcode-select --install)

4) This creates a compiled executable program named a.out by default. Execute the newly created
compiled program by typing ./a.out

In the C programming language, we have to first compile our source code to an executable program (the
compiler automatically set the permissions of the a.out file to be executable), then run the compiled
program. Other programming languages such as Python or Perl are interpreted, which means that a text
file containing source code for a Python script can be directly executed (assuming the text file has
permissions set to allow it to be executed).

Lecture 4: Introduction to Programming
October 4, 2022

Configure, Make and Install
To install and compile a more complex Unix program, follow these steps:

1) Check for a file named configure. If one exists, run the command ./configure. This
will configure the installation for your system

2) Check for a file called Makefile or make. If it exists, run the command make. This
will compile the program for your system. For simple programs, this may be the only
step necessary

3) In some cases, you can test the compilation first by running the command make test

4) You may then need to finish the installation by running the command make install

If you have problems getting a Unix program to compile on OS X or cygwin, often all that is
needed is a minor change to the text in the configure or make file. Occasionally you may
need to run an additional command such as make install-lib or run build
instead. Often these details can be found in the documentation or website for the
program.

Lecture 4: Introduction to Programming
October 4, 2022

Installing a Unix C Program
Installing and Compiling a Bioinformatics C Program

1) Create ~/bin

2) Copy seqstat.tar to bin

3) In Terminal, type cd ~/bin and press return, then type tar -xvf
seqstat.tar to extract the files and press return

4) Type cd seqstat and press return, then type ls and press return to see what is
there

5) Since a Makefile exists, simply type make and press return to compile the program

6) To run the compiled program, type ./seqstat and press return. To quit a
program while it is running, press Control and C

Lecture 4: Introduction to Programming
October 4, 2022

Interpreting a Python Script
1) Open a new document in TextWrangler and type the following source code:

#!/usr/bin/python
print "Hello, world?"

2) Save the file in your home directory as hello.py

3) Try to run the script by typing ./hello.py and pressing return

4) Make any necessary modifications (you may need to use chmod 755
hello.py)

Note that in Python 3, print has become the print() function, so the
object you wish to print must be wrapped in parentheses, e.g.
print("Hello, world?")

Lecture 4: Introduction to Programming
October 4, 2022

Running an Interactive Python Script
1) Open a new document in BBEdit and type the following source code:

#!/usr/bin/python
your_name = raw_input('Enter your name: ')
print ('Hello, ' + your_name)

2) Save the file in your home directory as ihello.py

3) Try to run the script by typing python ihello.py and pressing return

4) Make any necessary modifications

Note that in Python 2.x raw_input is used to process a string, while input
is used to process an expression. In Python 3, input processes strings, and
raw_input no longer exists.

Lecture 4: Introduction to Programming
October 4, 2022

Structured Programming
In structured programming, programs are created using combinations of four constructs: (1)
instruction sequences, (2) branches, (3) loops and (4) modules. The program uses these
constructs to perform certain operations on data, which it can input and output.

Instruction Sequence
A sequential series of instructions.

Branch
A branch, also known as a conditional construct, occurs whenever a program’s flow can
divide into two or more streams, depending on whether a particular condition is true or
false, such as whether a stop codon has been reached or not.

Loop
A loop repeats an instruction or series of instructions a variable number of times, which can
be controlled by a test, such as whether the end of a DNA sequence has been reached.

Modules
Modules are a way to combine several operations (consisting of one or more of the other
three constructs) into a single, reusable component. That component can then be reused
throughout the program, or even used by other programs.

Lecture 4: Introduction to Programming
October 4, 2022

Python
The Python programming language was released in 1991 after two years of
development by Guido van Rossum, a Dutch programmer, now considered the
“benevolent dictator for life” of Python. The language’s name is a reference to Monty
Python’s Flying Circus.

The reference implementation of Python is written in C and called CPython, and is free
and open source, managed by the non-profit Python Software Foundation, and
supported by a large community of open source developers. The Python Package
Index (PyPi), which serves as a repository for free third party Python software, currently
contains nearly 200,000 packages.

Python supports a variety of programming paradigms, including object-oriented,
structured, functional and procedural programming. It is distinguished by its emphasis
on simplicity and readability of code, and uses whitespace indentation to delimit blocks
of code.

In recent years, Python has become one of the world’s most popular programming
languages, used heavily at Google, Facebook, CERN and NASA, widely taught in
introductory computer science courses, and is well established in bioinformatics.

Lecture 4: Introduction to Programming
October 4, 2022

With an Internet connection, try:

python
>>> import antigravity

Source: xkcd.com/353/

Lecture 4: Introduction to Programming
October 4, 2022

Instruction Sequences in Python
Instruction sequences in Python consist of statements and expressions.

Simple statements are written one per line, and semi-colons can be used to separate
multiple statements on a single line. Statements generally perform some action, e.g.
return, and can produce a value as a result, although statements to which a value is
assigned (e.g. x = 1) will not directly produce a result. Commonly used statements
include def, break and return.

Expressions consist of a combination of values, variables and mathematical operators
that produce at least one value (e.g. y = x + 1). Even a lone value or variable can
be considered an expression. Functions are code to which parameters can be passed
to return a value, e.g. range(1,11). Blocks of Python text that are to be executed as
a function are delineated by indented white space. When the indent ends, the function
ends. Note that in most other programming languages, curly braces {} are used for
this purpose.

The # symbol is used to indicate a comment. Anything on a line after a # symbol is
ignored by Python.

Lecture 4: Introduction to Programming
October 4, 2022

Variables in Python
Variables are one of the most useful features of programming languages, allowing a name to be
associated with a stored data value, such as a string of text or a number, that can change as the program
runs. Python does not require variables to be explicitly declared, and can handle variable types including:
number, string, list, tuple and dictionary. The type statement will identify the type of a variable.

Number: A number type can be an integer, long integer, float or complex number, e.g. int_value = 7

String: A string can be delimited by single, double, triple single or triple double quotes and can contain
tab or newline characters. Strings are immutable, functions return new strings derived from the original,
e.g. dna_sequence = "GCATTTGTGAGACCCCGTACGTAG"

List: A list holds multiple values of different types in an ordered list of data, e.g. rna = ["G", "C",
"A", "U"] The first element in an list is numbered 0, the second 1, the third 2, etc, and a value can be
retrieved by specifying its position, e.g. rna_value = rna[3]

Tuple: A tuple is similar to a list, but immutable, and are generally used to provide keys for dictionaries.

Dictionary: A dictionary acts as an associative array, associating an immutable key with any kind of value,
e.g. stop = {"amber":"AUG", "ochre":"UAA", "opal":"UGA"}. The value can then be
retrieved from the dictionary using the appropriate key, e.g. codon_value = stop["amber"]

Lecture 4: Introduction to Programming
October 4, 2022

Branches in Python
if-elif-else
The block of code after the first true condition of the if clause or any number of
optional elif clauses is executed. If none are true, and an optional else clause exists,
the block of code following the else is executed. In Python, blocks are indicated by
indentation. Each block consists of one or more statements separated by new lines at
the same level of indentation, e.g.
if dna_length > 1000:

algorithm_to_use = "longblast"
elif dna_length > 100:

algorithm_to_use = "midblast"
else:

algorithm_to_use = "shortblast"

There is also a one line syntax that allows for simple conditional expressions (if-else):
[on_true] if [expression] else [on_false], e.g.
number = input("Enter a number for absolute value: ")
print (-number if number < 0 else number)

Lecture 4: Introduction to Programming
October 4, 2022

For Loops in Python
for
The for loop can iterate over any items in a list or tuple. A break statement can
be used to end the loop after it finds what you are looking for. A for loop is
also used when you want to repeat something n times, e.g. for ten times:

for x in range(1,11):
print "x is now %d" % (x)

Note that in most other programming languages, particularly those derived
from C, a for loop will look something like this:
for (i = 1; i < 11; ++i)
{
 printf("%d ", i);
}

Lecture 4: Introduction to Programming
October 4, 2022

While Loops in Python
while
The while loop is executed as long as the condition is true:

i = 1
while i < 11:

print(i)
i += 1

A break statement can be used to end the loop. It is often used to process
input in Python, e.g.
while True:

x = raw_input("Please type goodbye:")
if n.strip () == 'goodbye'

break

Lecture 4: Introduction to Programming
October 4, 2022

Defining a Function in Python
You can easily define (def) your own functions in Python.

#!/usr/bin/python
def algorithm(dna_length):
 if dna_length > 1000:

 algorithm_to_use = "longblast"
 elif dna_length > 100:

 algorithm_to_use = "midblast"
 else:

 algorithm_to_use = "shortblast"
 return algorithm_to_use

#main
user_input = int(raw_input("Enter DNA length: "))
print algorithm(user_input)

Lecture 4: Introduction to Programming
October 4, 2022

Python Input and Output
Keyboard input to a Python program can be obtained using the raw_input function,
which returns whatever the user typed up to pressing return as a string (or input for an
expression, though note that this syntax differs in Python 3, where input returns a string).

Opening a file for reading or writing is done using the open function. By default, files
(technically file objects) are opened for reading, specifying 'w' opens files for overwriting
(any existing data in the file will be erased), 'a' opens files for writing in append mode
(new data is appended to data already in the file). Once finished reading or writing, the
file should be closed using the close method.

The readline method reads a single line including any newline character, and is
commonly used to read a file a line at a time, while readlines reads all the lines in a file,
and returns them as a list of strings, one per line. The write method writes a single string
(which can include newline characters) to a file, while writelines writes a list of strings to
a file.

file_object = open("anybody.txt", 'w')
file_object.write("Is there anybody out there?")
file_object.close()

Lecture 4: Introduction to Programming
October 4, 2022

Modules in Python
Python is fundamentally a modular language. Complex programs are often split into
modules for ease of maintenance and reusability.

A Python module is simply a text file containing additional definitions and statements.
The filename should end in .py and the name of the module (the filename) is
available in the module as the value of the global variable _name_. Packages are
organized collections of modules (in other langauges, they may be called libraries.)

Python comes with a number of default modules that are already installed as part of
its standard library, such as the string module, which supports common string
operations, or the sys module, which allows access to command line arguments
passed to a script. To add functionality from such a module, it has to be imported
using the syntax import modulename or from modulename import *.

It is possible to install and then import many modules or packages, including third
party libraries such as BioPython, which add significant functionality to Python. Be
aware that third party modules may have dependencies, that is they may need other
third party modules or packages (e.g. NumPy or SciPy) installed to function.

Lecture 4: Introduction to Programming
October 4, 2022

Using a Python Module
randomdna.py
This Python script to generates a random sequence of nucleotides of length
100, using the random module, the functions join, random.choice and
xrange, and a for loop with a temporary _ variable and a length variable:

#!/usr/bin/python
import random
def DNA(length):
 return ''.join(random.choice('acgt') for _ in xrange(length))
print DNA(100)

For your take home assignment, you will be modifying randomdna.py to
function more interactively, writing a specified length of random DNA to a
specified file name.

Lecture 4: Introduction to Programming
October 4, 2022

Writing to a File With a Python Script

anybody.py
This Python script writes a string to a file called anybody.txt (overwriting it if it
already exists).

#!/usr/bin/python
file_object = open("anybody.txt", 'w')
file_object.write("Is there anybody out there?")
file_object.close()

For your take home assignment, this approach can be used for modifying
randomdna.py to write to a file. For modifying countgc.py to read from a file,
you may want to look into the read option of the open function, or look into the
read function.

Lecture 4: Introduction to Programming
October 4, 2022

Counting %GC with a Python Script
countgc.py
Uses the string library to count percent GC from raw_input (or input in Python 3).

#!/usr/bin/python
from string import *

def count_gc(dna):
count_g = count(dna, 'g')
count_c = count(dna, 'c')
dna_length = len(dna)
percent_gc= 100 * float (count_g + count_c) / dna_length
return percent_gc

dna = raw_input ("Enter a lowercase DNA sequence: ")
print count_gc(dna), "percent GC"

For your take home assignment, you will be modifying countgc.py to function more
interactively, reading and counting percent GC from a specified file.

Lecture 4: Introduction to Programming
October 4, 2022

Programming References
Think Python: How to Think Like a Computer Scientist by Allen B. Downey,
free at http://www.greenteapress.com/thinkpython/thinkCSpy.pdf with an
interactive website at https://runestone.academy/runestone/books/published/
thinkcspy/index.html

The Python Tutorial free at https://docs.python.org/3/tutorial/index.html

Dive Into Python 3 free at https://diveintopython3.problemsolving.io

Learn Python the Hard Way at https://learnpythonthehardway.org/book/

The Quick Python Book, 3rd Edition by Naomi Ceder

Python Programming: An Introduction to Computer Science, 3rd Edition
by John Zelle

Bioinformatics with Python Book Cookbook, 2nd Edition by Tiago Antao

http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://runestone.academy/runestone/books/published/thinkcspy/index.html
https://runestone.academy/runestone/books/published/thinkcspy/index.html
https://docs.python.org/3/tutorial/index.html
https://diveintopython3.problemsolving.io
https://learnpythonthehardway.org/book/
http://www.greenteapress.com/thinkpython/thinkCSpy.pdf
https://runestone.academy/runestone/books/published/thinkcspy/index.html
https://runestone.academy/runestone/books/published/thinkcspy/index.html
https://docs.python.org/3/tutorial/index.html
https://diveintopython3.problemsolving.io
https://learnpythonthehardway.org/book/

