
Lecture 3: Unix and Scripting
September 27, 2022

ICQB
Introduction to Computational & Quantitative Biology (G4120)
Fall 2022
Oliver Jovanovic, Ph.D.
Columbia University
Department of Microbiology & Immunology

1969 AT&T UNIX
1970
1971
1972
1973
1974
1975
1976 Apple I
1977 Apple II BSD UNIX
1978
1979
1980 Apple III
1981 MS-DOS
1982
1983 Lisa AT&T UNIX V MINIX
1984 Macintosh SunOS
1985 Windows
1986
1987
1988
1989 NEXTSTEP BSD NR1
1990 WIndows 3.0
1991 Solaris Linux
1992 FreeBSD
1993 NetBSD Debian WIndows NT
1994 RedHat
1995 WIndows 95
1996
1997
1998 Windows 98
1999
2000 WIndows 2000 WIndows ME
2001 Classic Mac OS X Windows XP
2002
2003
2004 Ubuntu
2005 OpenBSD
2006
2007 iOS Vista
2008 Android
2009 Windows 7
2010
2011
2012 Windows 8
2013
2014
2015 Windows 10

Apple

UNIX

Windows

Lecture 3: Unix and Scripting
September 27, 2022

Evolution of Modern Operating Systems

Lecture 3: Unix and Scripting
September 27, 2022

The Era of Modern Computing
1964 Mouse & Graphical User Interface Douglas Engelbart, Xerox PARC

1969 ARPAnet UCLA, Stanford, UC Santa Barbara & University of Utah

1969 UNIX Ken Thompson & Dennis Ritchie, Bell Laboratories

1973 C Dennis Ritchie & Brian Kernighan, Bell Laboratories

1973 Ethernet Robert Metcalfe, Harvard University/Xerox PARC

1973 FTP Alex McKenzie, BBN

1974 TCP Vint Cerf & Robert Kahn

1975 Microsoft Corporation Bill Gates & Paul Allen

1976 Apple Computer Steve Wozniak & Steve Jobs

1978 Usenet Tom Truscott, Jim Ellis & Steve Bellovin

1981 IBM PC IBM Corporation

1982 TCP/IP ARPA

1984 DNS Jon Postel

1984 Macintosh Apple Computer

1985 Windows Microsoft Corporation

1986 NeXT Computer Steve Jobs

1989 HTML & HTTP/BSD Unix NR1 Tim Breners-Lee, CERN/University of California,
Berkeley1991 Linux Linus Torvalds

1993 Mosaic Marc Andreessen

2001 OS X Apple Computer

2004 Google Larry Page & Sergey Brin

2006 Cloud Computing Amazon Web Services

2007 iOS Apple Computer

Lecture 3: Unix and Scripting
September 27, 2022

Open Source
The Open Source Initiative (OSI) certifies Open Source licenses.To be OSI certified, the software
must be distributed under a license that guarantees the right to read, redistribute, modify, and use
the software freely. A variety of Open Source licenses exist, from the more permissive BSD style
license (allows commercial resale) to the stricter GNU General Public License (GPL) license (any
software created with the code must remain free).

Open Source Definition for Open Source Initiative Certification
1. Free Redistribution (may not be restricted)
2. Source Code (unobfuscated, included or readily available)
3. Derived Works (modifications must be allowed to be distributed under the same terms)
4. Integrity of The Author's Source Code (can be protected)
5. No Discrimination Against Persons or Groups
6. No Discrimination Against Fields of Endeavor
7. Distribution of License (license applies to all to whom the program is redistributed)
8. License Must Not Be Specific to a Product (including a particular software distribution)
9. License Must Not Restrict Other Software (distributed along with it)
10. License Must Be Technology-Neutral

Examples of Open Source Operating Systems and Software
BSD NR1 Unix (BSD), Linux (GPL), Darwin (Apple), Ubuntu (GPL), Android (Apache) and
Apache (Apache), MySQL (GPL/commercial), Firefox (Mozilla), GIMP (GPL), Staden (BSD),
EMBOSS (GPL), Python (Python), Biopython (Biopython), R(GPL), Bioconductor (Artistic)

Lecture 3: Unix and Scripting
September 27, 2022

1969 AT&T UNIX
1970
1971
1972
1973
1974
1975
1976
1977 BSD UNIX
1978
1979
1980
1981
1982
1983 AT&T UNIX V MINIX
1984 SunOS
1985
1986
1987
1988
1989 NEXTSTEP BSD NR1
1990
1991 Solaris Linux
1992 FreeBSD
1993 NetBSD Debian
1994 RedHat
1995
1996
1997
1998
1999
2000
2001 Mac OS X
2002
2003
2004 Ubuntu
2005 OpenBSD
2006
2007 iOS
2008 Android

Evolution of Unix

Lecture 3: Unix and Scripting
September 27, 2022

Why Use Unix?
• Historically, Unix has been used as a free academic and research operating system

(BSD, FreeBSD, etc.), and many forms of Unix are Open Source

• Unix is extremely stable

• Unix is very efficient

• Unix has powerful free scripting and automation tools (bash, tcsh, grep, sed, awk,
rsync, etc.)

• Unix has excellent free programming tools (Perl, Python, Ruby, bioperl.org,
biopython.org, biojava.org, etc.)

• All the bioinformatics tools needed to do complex analysis are available for free on
Unix (BLAST, FASTA, CLUSTAL, PHYLIP, PHRED, PHRAP, CONSED, EMBOSS, HISAT,
Lighter, Bowtie, etc.)

• New algorithms in computational biology are generally first implemented in Unix

• Unix is easy to program and network (HTML, HTTP, Apache, CGI, etc.)

• Many other useful programs originated on Unix, and the majority are available for free,
complete with source code (Open Source licenses, bioinformatics.org, open-bio.org,
etc.)

Lecture 3: Unix and Scripting
September 27, 2022

Macintosh OS X Architecture

User Experience
The layer with which most users interact with the
Macintosh includes Aqua (the graphical user interface
(GUI) of OS X), Dashboard (which manages and
displays desktop widgets), Spotlight (which provides
system wide search and indexing through the use of
metadata) and Accessibility (assistive technology for
the disabled).

Darwin
The Open Source Unix operating system that
underlies OS X. It is derived from NeXTSTEP and BSD
Unix, and is built around a XNU Mach3/BSD hybrid
kernel and a I/O Kit device driver API.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Shells
Shells

The command line interface used to interact with Unix systems is known as a shell. A
shell interprets and executes the commands you give it, and can also run text files
called shell scripts that allow for commands to be strung together, manipulated, and
automated. A number of Unix shells exist, generally with slight variations in syntax and
features:

sh
The Bourne shell, the original Unix shell.

bash
The Bourne-again shell, a successor to sh. It is the default shell for older versions of
OS X, as well as cygwin and many Linux distributions.

zsh
Z shell, an extended version of the Bourne shell, mostly compatible with bash. It is the
default shell for macOS Catalina (10.15) and newer versions of macOS.

Lecture 3: Unix and Scripting
September 27, 2022

Terminal and the Unix Command Line

Terminal
Terminal, located in /Applications/Utilities, is the application which gives an OS X user command line
shell access to the underlying Unix operating system. One can drag a folder or application to the
Terminal window to get its pathname, which is often required when issuing Unix commands.

ls (list)
Lists the current directory’s contents. Adding the -a option (ls -a) lists all contents, including what is
normally invisible (file or directory names starting with a period, e.g. .bash_profile, are normally
invisible). Adding the -l option (ls -l) lists long information about files: type, permissions, links,
owner, group, size, modification date & time and name. The wild card character (*) is often useful in
arguments for this command, e.g. ls *.doc will list all Word files with that extension in a directory.

cd (change directory)
By itself, cd takes you to your home directory. Using an argument of two periods, i.e. cd .., moves
you to the directory directly above the current directory, while cd / moves you to the root directory. If
you get lost, type pwd to print your working directory, that is, list your current directory as a pathname.

exit
Type exit to logout of a Terminal session.

Lecture 3: Unix and Scripting
September 27, 2022

Terminal
Terminal
Terminal is the application which gives an OS X or cygwin user command line shell
access with which to directly interact with the underlying Unix operating system.

Terminal Startup
When Terminal starts up, it runs the default shell. The bash shell is a program which
begins by executing commands in the system file /etc/profile. It then looks for an
optional list of commands to execute in a file in the home directory called .bash_profile
(if not found, it will also look for files called .bash_login and .profile). It then looks for a
file in the home directory called .bash_history, from which it loads a list of previously
executed commands. The zsh shell works similarly.

Terminal Preferences
In OS X, Terminal is located in the /Applications/Utilities folder, and its preferences can
be adjusted in Terminal > Preferences. You can adjust the color of the text, the color and
transparency of the Terminal window background, and other shell behavior.
 In OS X you can activate Use Option as Meta Key under Preferences > Profiles >
Keyboard, which means the cursor will go where you click while holding down the
option key, instead of only allowing the cursor to move with the arrow keys.

Lecture 3: Unix and Scripting
September 27, 2022

Terminal Shortcuts
Saving Sessions
All the text in the Terminal window can be saved as a text file in OS X, or copied and pasted.
This can be useful if you’re carrying out a complex procedure you might want to repeat later, or
to copy and paste commands from to cut down on typographical errors.

Multiple Windows
One can open and work in multiple Terminal windows. This is particularly useful if you are
working in more than one directory, or have started a process that may take a while to complete.

Dragging to Reveal Pathnames
Dragging a folder or file onto the Terminal window enters its path. This is an extremely useful
shortcut when using commands that require a pathname.

Prompt
By default, the Terminal prompt tells you the name of the computer, what directory you are
currently in (~ for your home directory), and in OS X, what user you are logged in as.

exit
Type exit to logout from a Terminal session. You can adjust Terminal’s Window Settings to
automatically close upon a successful logout.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Pathnames
/ (root directory)
The Unix file system organizes files and directories in a hierarchical inverted tree structure. The root
directory is the highest level directory in Unix, represented by a frontslash, e.g. with a default OS X
installation, this corresponds to Macintosh HD. The frontslash key (/) is located next to the right shift
key.

Absolute Pathnames
An absolute pathname explicitly tells which directories you must travel to get from the root to the
directory or file you want, e.g. /Applications/Utilities/Console.app. Frontslashes are used
to separate directory names in a pathname, and an absolute pathname always starts with a frontslash.

~ (home directory)
The home directory is your user directory, and its path is represented by the tilde character. Instead of
typing /Users/my_user_directory/Documents, you can type ~/Documents. The tilde
character (~) is located on the backtick key underneath the esc key.

Relative Pathnames
Relative pathnames give the location relative to your current directory. If you are currently in the OS X
Applications directory, the relative pathname to Utilities below is simply Utilities. Two periods (..) in a
relative pathname refer to the directory directly above the one that follows. In ../Utilities, the two
periods refer to the Applications directory above. A relative pathname never starts with a frontslash.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Commands
Commands
A command in Unix consists of a program that is executed by typing its name. That program then generates
output, by default to the Terminal window, based on the options and arguments it was provided with. Options
follow the command, and arguments follow options, all separated by single spaces,
e.g. command -option(s) arguments(s)

Program
A command line program is executed by typing its name on the command line and pressing return, e.g. typing
ls and pressing return will list files in the current directory. Hundreds of command programs are built-in.

Options
Options modify the behavior of a program. Traditionally, options are represented by a hyphen followed by a
single letter. Adding the -l option to ls, i.e. ls -l results in long file listings. Multiple options can be used
together by typing more than one letter after the hyphen.

Arguments
Arguments are the input the program acts upon. Typically, they are names of files or directories, but can be
nearly anything, including the output of other programs. Unix wild card characters can be useful here, such as
*, which stands for any group of characters, so ls *.txt would list only files with names ending in .txt.

Output
The result of a program is its output, which in OS X by default goes to the Terminal window, and can be
copied and pasted. However, a program’s output can be sent to a file, or even to another program.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Command Line Tips
Unix Wild Card Characters
* an asterisk stands for any group of characters (including none)
? a question mark stands for any one character
[] square brackets can be used to wrap a choice of single characters, e.g. [Aa] or can be used to

indicate a range of consecutive characters, e.g. [1-5]

Unix is Case Sensitive
Although OS X is not case sensitive, the underlying Unix operating system is case sensitive, and therefore
one should try to use the correct case when typing from the command line, or feeding input to command line
programs. Entering ls a* would list only files with names beginning with a lowercase a, and not files
beginning with an uppercase A.

man (manual)
The man program provides documentation for nearly every installed Unix program. Simply type man
name_of_program to view the documentation for that program. While viewing the documentation, hold
down the down arrow key or return key to reveal more of the documentation line by line, hit the spacebar to
display the next page, or type q to quit. To view a one page summary of documentation for man, use the -h
option, i.e. man -h (for more information about the man command, enter man man).

Tips
Some Unix commands may be limited to handling a maximum of 256 files at once, and having command lines
no longer than 2,048 characters. Certain characters, such as spaces, or special characters such as a
backslash must be “escaped” by putting a backslash (\) before them or putting single quotes around them.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Shell Shortcuts
Pathname Tab Autocompletion
If you press tab after partially typing a pathname, the shell will attempt to complete it for you.

History and Repeating Commands
The up arrow key will cycle forwards through all the commands you typed recently (and the down
arrow will go back), which can be considerably faster than typing, or even copying and pasting a
previously entered command. One can also use the back and forward arrow and delete keys to
modify a recalled previously entered command.
 Typing two exclamation marks, i.e. !! will repeat the last command. Typing history will show a
numbered list of previous commands, any of which can be executed by typing !commandnumber.
Pressing control and R, then typing a few letters will do a reverse search for previous commands
that start with those letters. In zsh, type history 1 to display more than the last 15 commands.

Multiple Commands
Multiple commands may be executed sequentially on the same line if they are separated by
semicolons, e.g. cd;ls.

Break
Press control and C or command and . to stop any program. This is useful if you start getting more
output than you anticipated. If you just want to pause output, press control and S to stop it, then
press control and Q to start again.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Navigation Commands
cd (change directory)
By itself, cd takes you to your home directory. If you add a pathname argument to the
command,
e.g. cd /Applications, it will take you to that directory instead.
 If a directory name in the path contains spaces, make sure to wrap it in single quotes,
e.g. cd /Applications/'DNA Strider'. If a name already contains single
quotes, wrap it in double quotes, and vice-versa.
 Using an argument of two periods, i.e. cd .. moves you to the directory directly
above the current directory, while cd / moves you to the root directory. Again, one
can drag a folder or application to the Terminal window to get its pathname, so it is
often easier to type cd followed by a space and drag the folder you want to make your
current directory onto the Terminal window than try to type the entire path.

pwd (print working directory)
Displays the pathname of the current directory by printing it to the screen. The first front
slash in the pathname represents the root directory, with another front slash separating
subsequent directories. The last directory listed is the current directory.

Lecture 3: Unix and Scripting
September 27, 2022

Unix File System Commands
cp (copy)
Copies files. The -R option, i.e. cp -R copies directories and their contents.

mkdir (make directory)
Makes a new directory (creates a new folder) with the provided name. Multiple directories can be
made at once if the names are separated by a space.

mv (move)
Allows you to rename or move a file, e.g. mv oldname.txt newname.txt.

rm (remove)
Removes/deletes the specified file(s). This command should be used with great precision,
particularly when combined with wild card characters, used in recursive mode or when used with
sudo. Used carelessly it can delete nearly every file on a computer. The -r option, i.e. rm -r runs
rm in recursive mode, where it will delete directories as well as files, including everything inside a
specified directory. The -i option, i.e. rm -i runs rm in interactive mode, where it will ask if you
really want to delete each file or directory before it is deleted, which can be a wise precaution.

rmdir (remove directory)
Removes/deletes a specified empty directory.

Lecture 3: Unix and Scripting
September 27, 2022

File Ownership and Permissions
File Ownership
A file is typically owned by the account that created it. There are three levels of
file access: owner, group and other. Each can have different levels of access. A
user can belong to more than one group, and a file can have more than one
owner, with different access levels for each. The default group in OS X is staff.
Users with administrative privileges also belong to the group admin. The chown
command is used to change ownership permissions.

File Permissions
In Unix, file permissions are commonly
noted in the order: owner, group, other.
Thus, a file with permissions 755 can be
read, written and executed by the owner,
but only read and executed by members
of the group or others. The chmod
command is used to change file
permissions.

Lecture 3: Unix and Scripting
September 27, 2022

Ownership and Permission Commands

chown (change ownership)
Allows you to change the owner and/or group a file belongs to. The syntax is owner:group, i.e.
chown simon file.txt will change the owner of file.txt to simon, while chown
simon:developer file.txt will change the owner to simon and the group to developer.
On occasion, sudo may have to be used with chown.

chmod
The command changes file or directory permissions, which can first be checked with ls -l.
The simplest chmod syntax to use is the numerical syntax owner/group/everyone, e.g. chmod
660 file.txt to give the owner and group of file.txt read and write permissions (6), or chmod
777 test.sh to give full read, write and execute permissions (7) on test.sh. Scripts must have
execute permission (7, 5 or 1) to work. Commonly, 755 permissions are used for scripts and
programs, e.g. chmod 755 stat.sh, to allow the owner full access (7) to stat.sh, and everyone
else execute and read permissions (5). On occasion, sudo may have to be used with chmod.

sudo (superuser do)
Allows you to execute a single command as a root user, or superuser, who has no limitations. It
can only be used from an account with administrative privileges. It should always be used with
care and precision.

Lecture 3: Unix and Scripting
September 27, 2022

Other Unix File Commands
more
Reads a file and outputs its content to the screen a page at a time (press the spacebar
to move to the next page, or press Q to quit). A related utility called less allows for
more control.

cat (concatenate)
Reads files and outputs their entire content (use control and s to pause then press
control and Q to restart).

find
Finds files starting in the specified directory, then recursively descending. A period (.)
specifies starting in the current directory, and the -name option finds files with the
specified name, e.g. find . -name *.pdf will find all files ending in .pdf in and
below the current directory.

sort
Sort arranges lines of text alphabetically or numerically, as specified by its options. The
option -r (sort -r) sorts in reverse order.

Lecture 3: Unix and Scripting
September 27, 2022

Other Useful Unix Commands
grep
Globally search a regular expression and print. Searches text for lines matching a
regular expression.

tr
Translate. Replaces specified characters in input with other specified characters in
output.

sed
A simple stream editor for parsing and transforming text.

awk
A simple programming language for searching and processing text files. Other good
options are the Perl or Python programming languages.

vi
A text editor with a modal interface and keystroke commands. Another option is
emacs, which uses key combinations. A simple option is ed, a line editor.

Lecture 3: Unix and Scripting
September 27, 2022

Unix Process Commands
Processes
When running, Unix programs run as processes, which can be displayed in OS X using the
Activity Monitor utility (located in /Applications/Utilities), or directly from the Unix command
line using top.

top
Displays all currently running processes, identifying each with a unique PID (process ID).
COMMAND is the name of the program, and %CPU is the percentage of the processor that
process is using. The option -u, i.e. top -u will list the top processes using the most
processor power in order from first to last. Press Q or issue a break (control and C or
command and .) to quit top.

kill
Kills a particular process when a PID is provided as an argument, e.g. kill 2323. The
option -9, i.e. kill -9 tells it to terminate a process with extreme prejudice, e.g. kill -9
2323. Use this command carefully, but it can sometimes be useful – for example, if an
application crashes, it may leave a process running, which can slow the computer unless it is
killed. On OS X is also possible to kill processes by quitting them with Activity Monitor.

Lecture 3: Unix and Scripting
September 27, 2022

Command Redirection
| (pipe)
Send output directly to the command line program that follows for it to use as
input. This allows chaining a series of simple programs together to perform
complex tasks. For example, ls | more sends output from the ls program
to the more program, which displays the output only one screen at a time,
while ls -l | grep 'Apr 16' (sends the output of the ls program to
grep, which will result in a long information list of every file in the directory last
modified on April 16th). The pipe character (|) is the vertical bar on the
backslash key below the delete key.

` ` (command substitution)
Enclosing a program command with backticks results in the output from that
program being sent back to the command line for use an an argument by
another program, e.g. ls -l `grep -l 'virus' *` (takes any files grep
finds with the word virus inside them and outputs them as a long information
list). The backtick key is directly below the esc key.

Lecture 3: Unix and Scripting
September 27, 2022

Input and Output Redirection
< (input redirection)
Takes input from the file specified as an argument, rather than from standard input
(normally, the keyboard).

> (output redirection)
Writes the output to the file name specified in an argument, either creating a new file,
or overwriting an existing file with the same name, instead of sending it to standard
output (on OS X, the Terminal window). ls > contents.txt will write a list of files in
the current directory to a new file called contents.txt. Take care not to overwrite
important files with the same name.

>> (append output)
Appends the output to the file with the name specified in an argument. The command
ls >> contents.txt will append a list of the files in the current directory to the
end of an existing contents.txt file. The command cat body.txt >>
contents.txt will concatenate the content of body.txt to the end of an existing
contents.txt file.

Lecture 3: Unix and Scripting
September 27, 2022

Customizing the Shell
.bash_profile or .zshenv
Once a .bash_profile (for bash) or .zshenv (for zsh) file is added to your home directory, it is read by the
Terminal on startup, and any commands you have entered into that text file are automatically executed, allowing you
to significantly customize your shell environment. Use mv to rename a text file to .bash_profile or .zshenv as
OS X will not normally display or allow you to start a file name with a period, and make sure there is a return after
the end of the text.

PATH
PATH allows you to add directories to the paths recognized by the shell so that you can execute commands by just
typing the name of the command. PATH=$PATH . will allow you to execute a program located in your current
directory without having to type ./ in front of the name. Multiple paths can be added, separated by a colon (:).
Specifying particular directories that allow script execution is the safest approach to use.

alias
Alias lets you create a custom command or macro, e.g. alias dir "ls -la" would give a long format listing of
all files when you typed dir at a Terminal prompt.

Sample .bash_profile or .zshenv

alias dir "ls -la"
alias desk "cd ~/Desktop"
PATH=$PATH:/Developer/Tools:~/bin
export PATH

Lecture 3: Unix and Scripting
September 27, 2022

Unix Shell Scripts
A shell script allows you to create a single new Unix command out of existing shell
commands and programs. This is very useful for automating a process or running a series of
complex commands. The shell script is saved in an executable text file, the first line of which
must consist of a pound sign followed by a bang (together known as a shebang), then the
full path to the shell in which the script runs. For the default macOS zsh shell, this is:
#!/bin/zsh (for the bash shell it would be #!/bin/bash).

The same procedure is used to execute programs as scripts by interpreted programming
languages such as Python, except the full path to the programming language is specified
instead.

hal.sh

#!/bin/zsh
echo It can only be attributable to human error.

chmod 700 hal.sh
./hal.sh

Lecture 3: Unix and Scripting
September 27, 2022

More Complex Shell Scripts
countfasta.sh

#!/bin/zsh
for filename
do
 grep -cH '>' $filename
done

addfasta.sh

#!/bin/zsh
total=0
for filename
do

total=$(($total+`grep -ch '>' $filename`))
done
echo $total

chmod 755 countfasta.sh
./countfasta.sh *.fasta

chmod 755 addfasta.sh
./addfasta.sh *.fasta

Lecture 3: Unix and Scripting
September 27, 2022

Other Unix Scripts
Running Scripts
Running another kind of simple script, such as a Python script, simply involves downloading and
uncompressing the script, making sure that the script has its permissions set to allow it to be executable,
then running it. Some complex scripts may require that other scripts or libraries be installed before they
can run.

Permissions
To check permissions on a script, use the command ls -l. If the permissions list for the script does
not have an x in it, is is not executable (typically it will start -rwx).

Setting Permissions
To set the permissions of a script to be executable, use the program chmod. Issue the command chmod
700 name_of_script to give only the owner (yourself) permission to execute. To give any user the
ability to execute a script (but not change it) issue the command chmod 755 name_of_script.

Run the Script Using Dot Slash Notation
You can execute a script in your current directory by using the command ./name_of_script. If you
know the scripting language being used, you can call it directly, and pass a reference to the script
name, e.g. issuing the command python name_of_script.py. You can also add the directory to
your path to allow you to execute scripts in that directory directly (e.g. PATH=$PATH:~/bin).

Lecture 3: Unix and Scripting
September 27, 2022

Running a Python Script
Running a Python Script

1) Open a new document in TextWrangler and type the following source code:

#!/usr/bin/python
print "Hello, world?"

2) Save the file in your home directory as hello.py

3) Try to run the script by typing ./hello.py in Terminal and pressing return

4) Make any necessary modifications to permissions if the script will not run
(e.g. chmod 700 hello.py)

Lecture 3: Unix and Scripting
September 27, 2022

Running More Complex Python Scripts

1) A Python script to generate a numbered list from 0 to 99, using a for loop
with a range of 100 and a number variable:

#!/usr/bin/python
for number in range (100):
 print(number)

2) A Python script to generate a random sequence of nucleotides of length
100, using the random module, a join function, a for loop and a length
variable:

#!/usr/bin/python
import random
def DNA(length):
 return ''.join(random.choice('acgt') for _ in xrange(length))
print DNA(100)

Lecture 3: Unix and Scripting
September 27, 2022

Unix and Scripting Resources
Bash Guide for Beginners
http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

Moving to zsh
https://scriptingosx.com/2019/06/moving-to-zsh/

A User’s Guide to zsh
https://zsh.sourceforge.io/Guide/zshguide_us.pdf

Books on Unix and Scripting
Mastering Regular Expressions by Jeffrey E. F. Friedl
Learning the UNIX Operating System by Grace Todino, John Strang & Jerry Peek
Think Unix by Jon Lasser
Learning Unix for Mac OS X by Dave Taylor
The Mac OS X Command Line by Ken McElhearn
Learn Enough Command Line to be Dangerous by Michael Hartl

http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
https://scriptingosx.com/2019/06/moving-to-zsh/
https://zsh.sourceforge.io/Guide/zshguide_us.pdf
http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
https://scriptingosx.com/2019/06/moving-to-zsh/
https://zsh.sourceforge.io/Guide/zshguide_us.pdf

