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What is bioinformatics and 
computational biology? 

“Biologists doing things with computers.” 
 – Lincoln Stein, CSHL 
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History of Sequencing
1977 Maxam-Gilbert and Sanger sequencing
1980 øX174 (5,386 bp)
1981 Human mitochondria (16,569 bp)
1981 Poliovirus (7,440 bp) 
1990 Human Genome Project
1992 The Institute for Genomic Research
1994 RK2 (60,099 bp)
1995 Haemophilus influenzae (1.8 Mb) 
1995 Mycoplasma genitalium (0.58 Mb)
1996 Saccharomyces cerevisiae (12.1 Mb)
1997 Escherichia coli (4.7 Mb)
1998 Celera, Inc. 
1998 Caenorhabditis elegans (97 Mb)
2000 Drosophila melanogaster (180 Mb)
2000 Arabidopsis thaliana (115 Mb)
2001 Salmonella typhimurium (4.8 Mb)
2001 Homo sapiens (2.9 Gb)
2002 Mus musculus (2.6 Gb)
2003 Nanoarchaeum equitans (0.49 Mb)
2004 Legionella pneumophila (3.4 Mb)
2005 Pan troglodytes (2.8 Gb)
2006 454 Pyrosequencer
2007 Illumina HiSeq
2010 Ion Torrent
2011 Illumina MiSeq and PacBio RS
2013 PacBio RS II
2014 Illumina NexSeq
2015 Oxford Nanopore MinION and PacBio Sequel
2017 Illumina NovaSeq
2019 Oxford Nano. PromethION and PacBio Sequel 

II

Source: David W. Ussery (2004) Genome Update: 161 prokaryotic 
genomes sequenced, and counting, Microbiology150: 261-263.

Growth of Sequenced 
Prokaryotic Genomes
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The Genomics Era

Source: GOLD Release v.5  May 28, 2014, 
genomesonline.org and Su, Andrew 
(2013) Cumulative sequenced genomes, 
dx.doi.org/10.6084/m9.figshare.723384

2013  Predictions

http://dx.doi.org/10.6084/m9.figshare.723384
http://dx.doi.org/10.6084/m9.figshare.723384
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The Genomics Era

Source: GOLD Release v.5  May 28, 2014, 
genomesonline.org and Su, Andrew (2013) 
Cumulative sequenced genomes, dx.doi.org/
10.6084/m9.figshare.723384 
https://gold.jgi.doe.gov

Cumulative sequenced genomes 

Bacteria 398,322 4x 
Eukaryotes 46,481 5x 
Archaea 4,956 4x  

2013  Predictions 2022  Reality

http://dx.doi.org/10.6084/m9.figshare.723384
http://dx.doi.org/10.6084/m9.figshare.723384
https://gold.jgi.doe.gov
http://dx.doi.org/10.6084/m9.figshare.723384
http://dx.doi.org/10.6084/m9.figshare.723384
https://gold.jgi.doe.gov
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Exponential Growth of Biological 
Data and Computing Power

GenBank 
“From 1982 to the present, the number of bases in GenBank has 
doubled approximately every 18 months.” 
Source: www.ncbi.nlm.nih.gov/genbank/statistics 
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Exponential Growth of Biological 
Data and Computing Power

GenBank 
“From 1982 to the present, the number of bases in GenBank has 
doubled approximately every 18 months.” 
Source: www.ncbi.nlm.nih.gov/genbank/statistics 

Moore’s Law 
Over the history of computing hardware, the number of transistors 
in a dense integrated circuit doubles approximately every 18 to 
24 months. 
Source: Moore, Gordon E. (1965) Cramming more components onto integrated circuits. Electronics: 
114-117 (with subsequent adjustments).
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Growth of GenBank
Chart
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Moore’s Law
w Moore
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Third Generation DNA Sequencing?

minION from Oxford Nanopore Technologies
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Fourth Generation DNA Sequencing

PromethION 48 from Oxford Nanopore Technologies
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Dealing with exponentially 
increasing biological 
data… 

…requires assistance.
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What is the oldest device 
developed by humans to 
assist in computation? 
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c. 40,000 B.C.

Lebombo Bone Tally Stick 
A baboon fibula with 29 notches discovered in the 
Lebombo Mountains of Africa.
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c. 20,000 B.C.

Ishango Bone Number Stick 
A baboon fibula with a sharp piece of quartz embedded in one end and tally marks 
carved on it in three columns. The left column consists of the prime numbers 19, 17, 13 
and 11. The center column consists of the numbers 7, 5, 5, 10, 8, 4, 6 and 3. The right 
column consists of the numbers 9, 19, 21 and 11. It was discovered in Ishango in central 
Africa, near one of the headwaters of the Nile.
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c. 2400 B.C.

The Abacus 
Evidence of its use in a simpler form dates back to 2400 B.C. in Sumer. The ancient Akkadian word 
“abq” means dust. Texts dating to 190 A.D. detail its use in a more sophisticated form in China.  

Source: Photo by Dave Fischer depicts a suanpan as used c. 1200 A.D.
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c. 200 B.C.

The Antikythera Mechanism 
An ancient Greek analogue computer consisting of 37 meshed gears that precisely mimicked the 
movements of the sun and moon, including the phases of the moon, tracked a 19 year Metonic 
calendar, predicted solar eclipses, calculated the timing of various Panhellenic games, and tracked 
the position of the five other planets known at the time. 

Source: Freeth, T., et al. (2006) Decoding the ancient Greek astronomical  
calculator known as the Antikythera Mechanism. Nature 444: 587–591.
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History of Early Computing
40,000 BC Tally systems Africa & Europe

 20,000 BC Prime system Africa

 2400 BC Abacus Sumer & Babylon

  200 BC Antikythera mechanism Greece

1500 Mechanical calculator Leonardo da Vinci

1621 Slide rule William Oughtred

1642 Arithmetic Machine Blaise Pascal

1822 Difference Engine Charles Babbage

1831 Computer program Lady Ada Lovelace

1936 Z1 Computer Konrad Zuse

1936 Turing Machine Alan Turing

1938 Boolean Circuits Claude Shannon

1943 COLOSSUS Alan Turing

1945 von Neumann Machine John von Neumann

1946 ENIAC John Mauchly & J. Presper Eckert 

1947 Transistor William Shockley, John Bardeen & Walter Brattain

1958 Integrated Circuit Jack Kilby & Robert Noyce
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Computational Biology
  • Data 
 Sequencers, FACS, scanners, microscopes, etc. 

• Analysis  
 Software, scripting, programming, etc. 

• Storage 
 Databases, local, network or cloud storage, backup, etc. 

• Sharing 
 Web, Internet, email, portable or cloud storage, etc.
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History of Early Bioinformatics
1869 DNA Johann Friedrich Miescher
1924 Chromosomal DNA Robert Feulgen
1928 Transforming principle Franklin Griffith
1944 DNA transformation Oswald Avery, Maclyn McCarty & Colin MacLeod
1948 Information Theory Claude Shannon
1949 Chargaff’s Rule Erwin Chargaff
1953 Double helix James Watson & Francis Crick

1955 Protein sequencing Fred Sanger
1961 Codons Sidney Brenner & Francis Crick
1966 Genetic code Marshall Nirenberg, Robert Holley & Har Khorana
1970 Restriction enzyme Hamilton Smith, Johns Hopkins
1970 Needleman-Wunsch S. Needleman & C. Wunsch

1971 MEDLINE NIH/NLM
1977 DNA sequencing Allan Maxam & Walter Gilbert/Frederick Sanger

1977 Staden programs Roger Staden
1981 Smith-Waterman Temple Smith & Michael Waterman
1982 GenBank LANL/EMBL/NCBI
1988 NCBI NIH/NLM
1988 FASTA William Pearson & David Lipman

1988 DNA Strider Christian Marck

1990 BLAST Stephen Altschul & David Lipman, NCBI
1994 DNA computer Leonard Adelman
1997 PubMed NCBI
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Sequence Analysis

SeqMatrix E. coli promoter output:
 
DNA Location: 3,075
Spacer Length: 11
Similarity Score: 55.29

CGACATTGCTTGACCC <11> GCGTGTTCAATTCG
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Phylogeny
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Data Visualization
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Multimedia
L27758. Birmingham IncP-a...[gi:508311]    Related Sequences, PubMed, Taxonomy  

LOCUS       BIACOMGEN              60099 bp    DNA     linear   BCT 08-JUL-1994 
DEFINITION  Birmingham IncP-alpha plasmid (R18, R68, RK2, RP1, RP4) complete 
            genome. 
ACCESSION   L27758 
VERSION     L27758.1  GI:508311 
KEYWORDS    complete genome. 
SOURCE      Birmingham IncP-alpha plasmid (plasmid Birmingham IncP-alpha 
            plasmid, kingdom Prokaryotae) DNA. 
ORGANISM    Birmingham IncP-alpha plasmid 
            broad host range plasmids. 
REFERENCE   1  (bases 1 to 60099) 
AUTHORS     Pansegrau,W., Lanka,E., Barth,P.T., Figurski,D.H., Guiney,D.G., 
            Haas,D., Helinski,D.R., Schwab,H., Stanisich,V.A. and Thomas,C.M. 
TITLE       Complete nucleotide sequence of Birmingham IncP-alpha plasmids: 
            compilation and comparative analysis 
JOURNAL     J. Mol. Biol. 239, 623-663 (1994) 
MEDLINE     94285211 
FEATURES             Location/Qualifiers 
     source          1..60099 
                     /organism="Birmingham IncP-alpha plasmid" 
                     /plasmid="Birmingham IncP-alpha plasmid" 
                     /db_xref="taxon:35419" 
BASE COUNT    10839 a  18681 c  18448 g  12131 t 
ORIGIN       
        1 ttcacccccg aacacgagca cggcacccgc gaccactatg ccaagaatgc ccaaggtaaa 
       61 aattgccggc cccgccatga agtccgtgaa tgccccgacg gccgaagtga agggcaggcc 
      121 gccacccagg ccgccgccct cactgcccgg cacctggtcg ctgaatgtcg atgccagcac 
      181 ctgcggcacg tcaatgcttc cgggcgtcgc gctcgggctg atcgcccatc ccgttactgc 
      241 cccgatcccg gcaatggcaa ggactgccag cgccgcgatg aggaagcggg tgccccgctt 
      301 cttcatcttc gcgcctcggg cctcgaggcc gcctacctgg gcgaaaacat cggtgtttgt
etc.
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Binary Computing and DNA
Modern computers are digital machines, which means their basic function involves 
using discrete symbols from a finite set.  

In 1936, Alan Turing proved that a finite state machine (FSM) moving up or down a 
tape of symbols, reading or writing one symbol at a time, could solve any 
computable problem, and serve as a universal machine. 

The most basic level of information in nearly all current computers represents only 
one of two possibilities: 0 (off) or 1 (on). A signal that can carry one of two possible 
messages (0 or 1) is called a binary signal, or a bit, so these computers are binary 
machines.

Universal Turing Machine
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The Digital Language of Computers
Binary Units 
0 or 1 = 1 bit 
8 bits = 1 byte 
1,024 bits = 1 kilobit 
1,024 bytes = 1 kilobyte (K) 
1,024 kilobytes = 1 megabyte (M) 
1,024 megabytes = 1 gigabyte (G) 
1,024 gigabytes = 1 terabyte (T) 

DNA has only four possibilities (so can be represented by 2 bits) 
G = 00
C = 11
A = 01
T = 10

Complementation (with intelligent choice of representation) 
G C C A = 00 11 11 01
C G G T = 11 00 00 10

0
1 bit = or = 2 possibilities

1
0 0

2 bits = or or = 2 x 2 = 4 possibilities
1 1
0 0 0

3 bits = or or or = 2 x 2 x 2 = 8 possibilities
1 1 1
0 0 0 0

4 bits = or or or or = 2 x 2 x 2 x 2 = 16 possibilities
1 1 1 1
0 0 0 0 0

5 bits = or or or or or = 2 x 2 x 2 x 2 x 2 = 32 possibilities
1 1 1 1 1
0 0 0 0 0 0

6 bits = or or or or or or = 2 x 2 x 2 x 2 x 2 x 2 = 64 possibilities
1 1 1 1 1 1
0 0 0 0 0 0 0

7 bits = or or or or or or or = 2 x 2 x 2 x 2 x 2 x 2 x 2 = 128 possibilities
1 1 1 1 1 1 1
0 0 0 0 0 0 0 0

8 bits = or or or or or or or or = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256 possibilities
1 1 1 1 1 1 1 1
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ASCII Coding of DNA
American Standard Code for Information Interchange (ASCII) 
• For practical purposes, DNA and RNA is generally represented in ASCII code, using the upper or lower case letters  

A, C, G, and T or A, C, G and U. 
• Each ASCII character occupies one byte, and thus has 256 possibilities, including all upper and lower case letters of  

the English alphabet, the ten Arabic numerals, punctuation, and special characters, such as @. 
• Thus, a kilobase of DNA (1,000 base pairs) occupies just under a kilobyte (1 K = 1,024 bytes) of storage in ASCII. An  

entire human genome, roughly 3 billion base pairs (3 gigabases), occupies just under 3 gigabytes of storage in ASCII. 

Transcription 
• Transcription is computationally trivial. One need only substitute a U for a T if dealing with a sense strand, or   

complement, then transcribe if dealing with the antisense strand. 

Translation 
• Translation is also computationally trivial. A computer can refer to a species appropriate translation table to translate 

DNA or RNA into the appropriate protein sequence. 

  AUA  I Isoleucine 
  AUC  I Isoleucine 
  AUG  M Methionine start 
  AUU  I Isoleucine 
  etc. 

Alternate Representation 
• Can readily convert an ASCII representation of DNA into other forms, such as graphics, or even music. 
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Information Content
Uncertainty 
Uncertainty can be thought of as the number of yes/no questions required to identify the state 
something is in. It can be measured in bits. 
• A coin toss, with only 2 possibilities, can be identified with a single question (i.e., “Is it heads?”) 
• A nucleotide, with 4 possibilities, can be identified with two questions (i.e. “Is it a purine? Is it 

adenine?”) 

Maximum Uncertainty 

Maximum Entropy = log2(n) where n is the number of possible states 

Coin  log2(2) = 1 bit 
DNA  log2(4) = 2 bits 
Protein log2(20) = 4.32 bits 

Compression algorithms offer one approach to testing the randomicity of a DNA sequence. 
A very random DNA sequence will require close to 2 bits per nucleotide to represent it, even when 
compressed. A sequence of DNA that has repeating patterns, or is otherwise highly structured, 
should be capable of being represented by less than 2 bits per nucleotide. 
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Algorithms in Computational Biology
Algorithm 
•  An algorithm is simply a series of steps used to solve a problem. One of a computer’s great strengths is its ability 

 to rapidly and accurately repeat recursive steps in an algorithm. 

Consensus 
•  Early algorithms for searching sequence data depended on consensus sequences. Thus, to find a prokaryotic  

 promoter, one would try to find something that matched a consensus -10 sequence (TATAAT), not too far   
downstream of a consensus -35 sequence (TTGACA). 

•  It rapidly became clear that biologically significant sequences rarely perfectly matched a consensus, and more  
 sophisticated approaches were adopted, including the use of matrices, Markov chains and hidden Markov 
models. 

Matrices 
•  Matrices take into account the distribution of every possible nucleotide (or amino acid) at a position in a set of 

known sequences. Searching with a matrix is therefore more sensitive than searching with a consensus, and can  
find biological features that a strict consensus approach would miss. 

Markov chains and hidden Markov models (HMMs) 
•  Markov chains and hidden Markov models are probabilistic models of sequences, and have proven useful in   

database searching, gene finding and multiple sequence alignment.  
•  A first-order Markov chain is a finite state automaton (a restricted Turing machine which only moves left to   

right) with probabilities for each transition to a new state (symbol) based on its current state. Higher order   
Markov chains take into account one or more previous states. 

•  A hidden Markov model is a Markov chain in which only the output can be observed (its current state is hidden).
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Consensus vs. Matrix
E. coli Promoter Consensus 

    -35 Region                                  -10 Region.  
  TTGACA.................TATAAT .

E. coli Promoter Matrix 
                                                                                 -35 Region    .
                               T  T  G  A  C  A  .    
A   11 8  8  7  8  7  3  5  5  0  1  0  14 5  9  5
C   3  4  2  4  4  3  5  2  8  1  1  2  3  11 2  5
G   3  2  4  2  4  5  5  5  5  2  1  17 1  2  3  3
T   4  7  7  8  5  6  8  9  3  17 18 2  4  3  7  9
 
               Spacer Region   .  
Length   9  10  11  12  13  14  15
         1   6  14   6   1   1   1
 
                       -10 Region.           . 
                   T  A  T  A  A  T        .            
A   4  5  3  4  4  0  20 5 12 11  0  7  4  6
C   5  4  5  4  5  2  0  3  3  4  1  2  7  6
G   2  5  5  8  7  2  0  3  3  3  0  6  5  6
T   10 6  8  5  6  17 1  9  3  4  20 6  5  4
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Matrix Analysis Example

SeqMatrix E. coli promoter output:
 
DNA Location: 3,075
Spacer Length: 11
Similarity Score: 55.29

CGACATTGCTTGACCC <11> GCGTGTTCAATTCG
    (TTGACA................TATAAT)
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Stochastic Modeling
Stochastic Model 
A model involving chance or probability. Markov models are a particular form 
of stochastic model. 

       
      A    C    G    T 
  A  40% 15% 15% 30% 
  C  25% 25% 25% 25% 
  G  20% 25% 30% 25% 
  T  35% 20% 20% 25%

Current 
Residue

Next Residue
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Markov Modeling
Markov State 
A Markov state emits a symbol each time you visit it. It connects to other states (and possibly 
itself), with transition probabilities attached. The sum of the transition probabilities is 1. 

E = Extended 
L = Loop 
H = Helix

E L 

H 
0.1 

0.3 
0.6 
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Markov Chains
Markov Chain 
A Markov chain is an interlinked chain, or network, of states connected by 
transition probabilities. 

H = Helix 
E = Extended 
L = Loop

H E 

L 
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Markov Transition Matrices
Transition Matrix 
A transition matrix for a first order Markov chain, the simplest kind. The sum of 
the transition probabilities from each state is 1.  

H = Helix 
E = Extended 
L = Loop

H E L

H 0.93 0.01 0.06

E 0.01 0.80 0.19

L 0.04 0.06 0.90

H E 

L 
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Hidden Markov Models
Hidden Markov Model (HMM) 
A hidden Markov model consists of two Markov chains connected such that a 
one to one correspondence between the state and the emitted symbol no 
longer exists.

Model 1

Transitions between models

Model 2
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GeneMark
GeneMark and GeneMark.hmm 
Mark Borodovsky, Georgia Institute of Technology 
http://exon.gatech.edu/GeneMark/ 

GeneMark 
GeneMark evaluates the protein-coding potential of a DNA sequence (within a 
sliding window) by using Markov models of coding and non-coding regions for 
various prokaryotic species. This approach is sensitive to local variations of coding 
potential, and the GeneMark graph shows details of the coding potential 
distribution along a sequence. It has been used since 1995 to provide automatic 
gene annotation for the H. influenza, M. jannaschii, B. subtilis and E. coli genomes.  

GeneMark.hmm 
GeneMark.hmm predicts genes and intergenic regions in a sequence as a whole 
using hidden Markov models with a hidden state network reflecting the “grammar” 
of gene organization. It identifies the most likely parse of the whole sequence into 
protein coding genes (with possible introns) and intergenic regions. It is currently 
used as a microbial genome annotation tool by the NCBI. 
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GeneMark Example
Source 
http://bioweb.pasteur.fr/docs/
genemark/images/cyay.gif
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Artificial Neural Network 
Artificial neural networks (ANN) are computational networks inspired by the 
connections of neurons in the brain. Artificial neurons are connected in a 
network that allows the output of some neurons to become the input of 
others, with weights assigned to each connection. The weights can be 
adjusted to better perform a particular task. A simple network is limited in the 
tasks it can perform. 

Input Layer 

Output Layer

Neural Networks

W1 W2
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Hidden Layers in Artificial Neural Networks 
Adding even a single hidden layer to a neural network allows it to perform more 
complex calculations. Such networks have become widely used in pattern 
recognition, signal processing and machine learning. 

Input Layer 

Hidden Layer 

Output Layer 

Hidden Layers

W1 W2 W3 W4

HW1
HW2

HW3
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Deep Neural Networks and Deep Learning 
Deep neural networks (DNNs) are artificial neural networks (ANNs) with 
multiple layers between the input and output layer. They have become widely 
used in machine learning and performing complex tasks, including cell 
classification and predicting gene-function relationships in bioinformatics. 

Deep Neural Networks

Image Source: Michael A. Nielsen, “Neural Networks 
and Deep Learning”, Determination Press, 2015.
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Programming in Bioinformatics
Computer programming is simply how we instruct computers to perform tasks for 
us. These are some of the programming techniques and languages commonly 
used in bioinformatics:  

• Regular expressions (regex) 

• Shell scripting (e.g bash), pipelines and redirects (Unix) and macros 

• Structured Query Language (SQL) 

• Perl practical extraction and reporting programming language 

• Python programming language 

• BioPython programming libraries 

• R statistical computing and graphics language 

• MATLAB numerical computing environment and language 

• Java general object oriented programming language 
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Regular Expressions
Regular expressions originated in the 1950s, when a mathematician, Stephen 
Kleene, described regular languages (finite languages that can be described 
with regular expressions) with a mathematical notation called regular sets. This 
notation could be used to easily match repeating patterns in strings, and has 
been widely adapted for this purpose by programmers.  

Regular expressions are now a feature of many programming languages, text 
editors (such as BBEdit) and utilities (such as grep), and can be used in 
bioinformatics for pattern matching and reformatting text files (commonly 
known as data munging).
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ICQB Course Website

https://microbiology.columbia.edu/icqb 
The course website will be the home of all course information, including the 
syllabus, lecture notes, downloads, and any updates or other news.
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ICQB Course Schedule
The course will meet Tuesdays, between 1:00 PM to 2:30 PM in HHSC 1307. A related 
hands-on session will follow each Thursday, from 4:30 PM to 5:30 PM in HHSC 1307.  

Check the syllabus on the course website for the most up to date schedule, but the 
current schedule is: 

September 13th Introduction to Computational Biology 
September 20th Introduction to Internet Resources and Databases 
September 27th Introduction to Unix and Scripting 
October 4th Introduction to Programming 
October 11th Introduction to Python and BioPython 
October 18th Quantitative Analysis and Presentation of Visual Data 
October 25th Introduction to Statistics 
November 1st Data Visualization with R and RStudio 
November 8th No class (Election Day) 
November 15th Genomics (Anne-Catrin Uhlemann)  
November 22nd No class (Thanksgiving) 
November 29th Introduction to Sequence Analysis and RNA-Seq (Thomas Postler) 
December 6th Sequence Analysis and RNA-Seq (Thomas Postler)


